Refresher Course in Calculus, Probability, and Statistics

Day 1: Calculus

Function

- Definition:
 - A function of a real variable *x* with domain D is a rule that assigns a unique real number to each number *x* in D.
 - Given a function *f*, the set of numbers x at which *f(x)* is defined is called the **domain** of *f*. The set of values *f(x)* obtained as *x* varies in the domain is called the **range** of *f*.

• Example: a supply function y = a + bp, where y is output, p is price.

Function Forms:

- **C** Examples:
 - \circ Linear function: y = ax + b
 - Quadratic function: $y = ax^2 + bx + c$
 - Natural exponential function: $y = e^x$
 - Nature logarithmic function: $y = \ln x$

Geometric Properties of a Function:

Introduction

- Differential calculus is the study of the rate at which quantities change.
 - The primary objects of study in differential calculus are the **derivatives** of a **primitive** function.
 - The process of finding a derivative is called differentiation.
- Integral calculus can be regarded as the "inverse" of differentiation.
 - The process of reconstructing a function from its derivative is called integration.
 - o 2 kinds of integrals:
 - \circ indefinite integral \rightarrow a function
 - \circ definite integral \rightarrow a number
 - ***** Focus on differential calculus and know how to get a derivative function

C References:

- [CAR] chap. 4; [CIA] chap. 6-8, 10, 13; [DOW] chap. 3-5, 7, 8, 14-16, 18; [SBL] chap.
 2.4-2.7, 3.5, 4, 5.5, 14; [SH1] chap. 6-9; [SH2] chap. 5 & 6
- *Paul's Online Math Notes* [URL: <u>http://tutorial.math.lamar.edu/</u>] Calculus I, Calculus II (Integration techniques)

Difference Quotient

- A change in a variable x is denoted: $\Delta x = x_1 x_0$
- Corresponding change of function: y = f(x) $\circ \Delta y = f(x_1) - f(x_0) = f(x_0 + \Delta x) - f(x_0)$
- **Difference Quotient**: Change in *y* per unit of change in *x*: $\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$
 - expresses the average change in y for $\Delta x = 1$ on $[x_0, x_1]$

Derivative : Formal Definitions

Derivative of function y = f(x)

\bigcirc At point x_0 :

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

- o $f'(x_0)$ is the *instantaneous/marginal* rate of change
- \circ f' ≥ 0 (> 0) \Leftrightarrow f increasing (strictly increasing)
- $f' \leq 0$ (< 0) \Leftrightarrow f decreasing (strictly decreasing)
- **\bigcirc** At any point *x*:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

• f'(x) is a function describing the *instantaneous* rate of change of y = f(x) for all values of x

Differentiability and Continuity

- Function is said differentiable at a point if its derivative exists at that point.
- **To be differentiable at a point, a function must:**
 - o be continuous AND
 - o have a unique tangent

Notation of the derivative

C Derivative of y = f(x) may be written in several *equivalent* ways:

$$f'(x)$$
 y' $f_x(x)$ $\frac{dy}{dx}$ $\frac{df}{dx}$ $\frac{df(x)}{dx}$ $\frac{d}{dx}f(x)$

- Leibniz's notation (with ds)
 - \circ preferred in economics
 - emphasizes that f(x) differentiated with respect to (wrt) x
 - can prevent confusion for functions of several variables $f(x_1, ..., x_n)$ and higher-order derivatives

Gottfried Wilhelm Leibniz (1646-1716)

Basic Rules for Differentiation

Function	Derivative
f(x)	$\frac{df(x)}{dx}$
α	0
αx	α
x^{lpha}	$\alpha x^{\alpha-1}$
α^{x}	$\alpha^x \ln(\alpha)$
e^x	e^{x}
$\ln(x)$	$\frac{1}{x}$

Simple Examples

• Compute f'(x) when $f(x) = x^3$: • Using definition (let: $\Delta x = h$) $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$ $=\lim_{h \to 0} \frac{(x^3 + 3x^2h + 3xh^2 + h^3) - x^3}{h} = \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}$ $= \lim_{h \to 0} 3x^2 + 3xh + h^2$ $= 3x^{2}$ • Using power function rule $f(x) = x^{\alpha} \Longrightarrow \frac{df(x)}{dx} = \alpha x^{\alpha-1}$ $\frac{dx^3}{dx} = 3x^2$ Compute f'(x) when $f(x) = \frac{1}{x}$ (Note: $\frac{1}{x} = x^{-1}$) $\frac{df(x)}{dx} = (-1)x^{-2} = -\frac{1}{x^2}$

Differentiation of Sums, Products, and Quotients

Function	Derivative
h(x)	$\frac{dh(x)}{dx}$
$f(x) \pm g(x)$	$f'(x) \pm g'(x)$
$f(x) \cdot g(x)$	$f'(x) \cdot g(x) + f(x) \cdot g'(x)$
$\frac{f(x)}{g(x)}$	$\frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left(g(x)\right)^2}$

Chain Rule for Differentiation

Composite function (or *function of function*): function in which y is function of u and u in turn is function of x

y = f(u) and u = g(x) \Rightarrow y = f[g(x)]

\bigcirc Derivative of *y* wrt *x*:

$$y' = f'(u) \cdot g'(x) = f'[g(x)] \cdot g'(x)$$

or: $\frac{dy}{dx} = \frac{df}{du} \cdot \frac{dg}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$
Example: $f(x) = (1 - x^3)^5$, $(g(x) = 1 - x^3, f(x) = g(x)^5)$
 $f'(x) = 5 \cdot (1 - x^3)^4 \cdot (-3x^2) = -15x^2 \cdot (1 - x^3)^4$

Higher Order Derivatives

f'(x):first derivative of ff''(x):second-order derivative of f

$$f''(x) = \frac{d}{dx} \left[\frac{df(x)}{dx} \right] = \frac{d^2 f(x)}{dx^2}$$

Multi-variable Functions

- Functions of several variables
 - Example: a production function $y = AK^aL^b$
 - measures rate of change of y wrt x₁ while x₂ is held constant (Note: "*held constant*" is used equivalently to "*all other things being equal*" or "*ceteris paribus*" in economics.)

Multivariable Functions and partial derivative

- ➡ For functions of several variables $y = f(x_1, x_2)$, (first-order) partial derivative:
 - $\frac{\partial y}{\partial x_1}$: (first-oder) partial derivative of $f(x_1, x_2)$ with respect to (wrt) x_1
 - o ∂ (read: «(partial) dee» or «partial») has the same function as d in Leibniz notation
 - measures rate of change of y wrt x₁ while x₂ is held constant (Note: "*held constant*" is used equivalently to "*all other things being equal*" or "*ceteris paribus*" in economics.)

Solutions:
$$\frac{\partial y}{\partial x_1}$$
, $\frac{\partial f}{\partial x_1}$, $f_1(x_1, x_2)$, $f_{x_1}(x_1, x_2)$, y_1

Partial differentiation wrt one of the independent variables follows the same rules as ordinary differentiation with other variable(s)/argument(s) treated as constants

Second-Order Partial Derivatives

Second-order **direct** partial derivatives of $y = f(x_1, x_2)$

• wrt
$$x_1: f_{11} = f_{x_1x_1} = \frac{\partial}{\partial x_1} \frac{\partial}{\partial x_1} y = \frac{\partial^2 y}{\partial x_1^2}$$

• wrt $x_2: f_{22} = f_{x_2x_2} = \frac{\partial}{\partial x_2} \frac{\partial}{\partial x_2} y = \frac{\partial^2 y}{\partial x_2^2}$

Cross (or mixed) partial derivatives:

$$f_{12} = f_{x_1 x_2} = \frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} y = \frac{\partial^2 y}{\partial x_1 x_2}$$
$$f_{21} = f_{x_2 x_1} = \frac{\partial}{\partial x_2} \frac{\partial}{\partial x_1} y = \frac{\partial^2 y}{\partial x_2 x_1}$$

 $\circ~$ If both cross partial derivatives are continuous , they are identical (i.e. $f_{12}=f_{21}$ [Young's theorem])

Exponential Functions

C Derivative: $f'(x) = a^x \ln(a)$

Natural Exponential Function

Natural exponential function:

$$f(x) = e^x = exp(x)$$

= exp(x)

with $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \approx 2.71828 \dots$ (Euler's number)

C Derivatives: $f'(x) = e^x$, $f''(x) = e^x$, ...

Logarithmic Functions

➡ Logarithmic function with base *a*:

exponent

$$f(x) = \log_a x \qquad a > 0, a \neq 1$$

Definition: $\log_a x$ is the exponent to which a must be raised to obtain x $y = a^x \iff x = \log_a y$

Properties:

Natural Logarithmic Function

Natural logarithmic function:

$$f(x) = \log_e x = \ln x$$

- Solution Inverse function of e^x : $e^{\ln x} = \ln(e^x) = x$
- Derivatives: $f'(x) = \frac{1}{x}$, $f''(x) = -\frac{1}{x^2}$, $f'''(x) = \frac{2}{x^3}$, ...

Logarithmic Differentiation

- Substitution: $\frac{d}{dx} [\ln f(x)] = \frac{f'(x)}{f(x)}$ iff *f*(*x*) is differentiable
 - o Demonstration: suppose that

 $y = \ln f(x)$ and f(x) is differentiable

- Recall, this is a composite function y = g[f(x)]: $g(u) = \ln u$ and u = f(x)
- Differentiate both functions wrt *u* and *x*, respectively:

$$g' = \frac{1}{u}$$
 and $u' = f'(x)$

• Apply chain rule:
$$y' = g'(u) \cdot f'(x)$$
:
 $y' = g' \cdot u' = \frac{1}{u}f'(x) = \frac{f'(x)}{u}$

• Recall, that
$$u = f(x)$$
 and substitute
 $y' = \frac{f'(x)}{u} = \frac{f'(x)}{f(x)}$

Comparison Logarithmic differentiation: use this property to differentiate f(x)

$$f'(x) = \frac{df(x)}{dx} = \frac{d}{dx} [\ln f(x)]f(x)$$

Logarithmic Differentiation (continued)

Example **①**:

- $f(x) = x^x$
 - Taking the logarithm: $\ln f(x) = \ln x^x = x \ln x$
 - Differentiate both sides wrt x (using logarithmic differentiation on the lhs): $\frac{f'(x)}{f(x)} = 1 \cdot \ln x + x \left(\frac{1}{x}\right) = \ln x + 1$
 - Multiply both sides by f(x): $f'(x) = (\ln x + 1)x^x$

Logarithmic Differentiation (continued)

Example **2**:

- $f(x) = [A(x)]^{\alpha} [B(x)]^{\beta}$
 - Taking the logarithm: $\ln f(x) = \ln([A(x)]^{\alpha}[B(x)]^{\beta}) = \alpha \ln A(x) + \beta \ln B(x)$
 - Differentiate both sides wrt x (using logarithmic differentiation on the lhs): : $\frac{f'(x)}{f(x)} = \alpha \frac{1}{A(x)} A'(x) + \beta \frac{1}{B(x)} B'(x) = \alpha \frac{A'(x)}{A(x)} + \beta \frac{B'(x)}{B(x)}$
 - Multiply both sides by f(x): $f'(x) = \left(\alpha \frac{A'(x)}{A(x)} + \beta \frac{B'(x)}{B(x)}\right) [A(x)]^{\alpha} [B(x)]^{\beta}$

Elasticities

Constitution Elasticity of y = f(x) with respect to x

- Ratio between *relative* change in *y* and *relative* change in *x*
- o dimensionless measure of association

$$\varepsilon_{yx} = \frac{\frac{dy}{y}}{\frac{dx}{x}} = \frac{dy}{dx} \cdot \frac{x}{y}$$

o $f(x)$ is $\begin{cases} elastic \\ of unit elasticity \\ inelastic \end{cases}$ at a point when $|\varepsilon_{yx}| \begin{cases} > 1 \\ = 1 \\ < 1 \end{cases}$

Generally:
$$\varepsilon_{yx} = \frac{dy}{dx} \cdot \frac{x}{y} = \frac{d \ln y}{d \ln x}$$

 \circ Because: $d \ln y = \frac{dy}{y}$ and $d \ln x = \frac{dx}{x}$

Partial elasticities for functions of multiple variables $y = f(x_1, ..., x_n)$ are similarly defined:

$$\varepsilon_{yx_1} = \frac{\partial y}{\partial x_1} \cdot \frac{x_1}{y}, \dots, \varepsilon_{yx_n} = \frac{\partial y}{\partial x_n} \cdot \frac{x_n}{y}$$

Elasticities (continued)

Example:

⇒ Find elasticity of *Y* with respect to *K* for $Y = AK^{\alpha}L^{\beta}$

Definition of elasticity: $\varepsilon_{YK} = \frac{\partial Y}{\partial K} \cdot \frac{K}{Y}$	Definition of elasticity: $\varepsilon_{YK} = \frac{\partial \ln Y}{\partial \ln K}$
$\circ \frac{\partial Y}{\partial K} \text{ is the partial derivative of } Y$ wrt. $K: \frac{\partial Y}{\partial K} = \alpha A K^{(\alpha-1)} L^{\beta}$ $\circ \frac{K}{Y} \text{ is simply the ratio of } K \text{ and } Y:$ $\frac{K}{Y} = \frac{K}{AK^{\alpha}L^{\beta}} = \frac{1}{AK^{\alpha-1}L^{\beta}}$ $\circ \text{ Combining the two terms: } \varepsilon_{YK} = \frac{\partial Y}{\partial K} \cdot \frac{K}{Y} = \alpha A K^{(\alpha-1)} L^{\beta} \cdot \frac{1}{AK^{\alpha-1}L^{\beta}} = \alpha$	• Log transformation: $\ln Y = \ln(AK^{\alpha}L^{\beta}) = \ln A + \ln K^{\alpha} + \ln L^{\beta} = \ln A + \alpha \ln K + \beta \ln L$ • Taking the partial derivative of $\ln Y$ wrt. $\ln K: \frac{\partial \ln Y}{\partial \ln K} = \alpha$

Derivatives (further information and exercises)

- More comprehensive discussion of differentiation (on Paul Dawkin's website)
 - One variable derivatives:
 - Explanation: <u>http://tutorial.math.lamar.edu/Classes/Calcl/DerivativeIntro.aspx</u>
 - Exercises: <u>http://tutorial.math.lamar.edu/Problems/Calcl/DerivativeIntro.aspx</u>
 - Partial derivatives:
 - Explanation: <u>http://tutorial.math.lamar.edu/Classes/CalcIII/PartialDerivsIntro.aspx</u>
 - Exercises: <u>http://tutorial.math.lamar.edu/Classes/CalcIII/PartialDerivsIntro.aspx</u>
 - Applications:
 - Explanation: <u>http://tutorial.math.lamar.edu/Classes/CalcI/DerivAppsIntro.aspx</u> and <u>http://tutorial.math.lamar.edu/Classes/CalcIII/PartialDerivAppsIntro.aspx</u>
 - Exercises: <u>http://tutorial.math.lamar.edu/Problems/Calcl/DerivAppsIntro.aspx</u> and <u>http://tutorial.math.lamar.edu/Problems/CalcIII/PartialDerivAppsIntro.aspx</u>

Indefinite Integral

Suppose we don't know primitive function H

- All we know is its derivative: $H'(t) = \frac{dH}{dt} = t^{-\frac{1}{2}}$
- We can use the differentiation rule: $f(x) = x^{\alpha} \Longrightarrow f'(x) = \alpha x^{\alpha-1}$

• And reverse it:
$$f'(x) = x^{\alpha} \Longrightarrow f(x) = \frac{1}{\alpha+1}x^{\alpha+1}$$

Possible solution for *H*

$$\circ H(t) = 2t^{\frac{1}{2}}$$

• But what about $H(t) = 2t^{\frac{1}{2}} + 99$ or $H(t) = 2t^{\frac{1}{2}} + 27000$?

• Because all constants disappear, the indefinite integral:

$$H(t) = 2t^{\frac{1}{2}} + c$$

is a group of functions, where c is an arbitrary constant

• To explicitly solve $H(t) = 2t^{\frac{1}{2}} + c$ we need additional information

• Initial or boundary condition (what was the state of the H(t) at a certain value of t)

Indefinite Integral

Definition of indefinite integral:

$$\int f(x)dx = F(x) + c \qquad \text{when } F'(x) = f(x)$$

S Basic Vocabulary:

- Symbol \int : integral sign
- Function f(x): integrand
- \circ *x*: variable of integration (indicated by *dx*)
- *c*: constant of integration
- We say *indefinite* because the technique of integration is applied without any numbers, borders, or limits
 - o Result is usually a function

Common integrals

Function	Anti-derivative
$\int x^{\alpha} dx$	$\frac{1}{\alpha+1}x^{\alpha+1} + c \text{if } \alpha \neq -1$
$\int \alpha dx = \int \alpha x^0 dx$	$\alpha x + c$
$\int dx = \int 1 x^0 dx$	x + c
$\int \frac{1}{x} dx$	$\ln x + c$
$\int \frac{1}{\alpha x + \beta} dx$	$\frac{1}{\alpha}\ln \alpha x + \beta + c$
$\int e^{x} dx$	$e^x + c$
$\int e^{\alpha x+b} dx$	$\frac{1}{\alpha}e^{\alpha x+b}+c \text{if } \alpha \neq 0$
$\int \alpha^x dx$	$\frac{1}{\ln \alpha} \alpha^{x} + c \text{if } \alpha > 0 \text{ and } \alpha \neq 1$

Indefinite Integral: properties

Multiplicative constants

$$\int \alpha f(x) dx = \alpha \int f(x) dx$$

\bigcirc Multiplicative constant -1

$$\int -f(x)dx = -\int f(x)dx$$

Sums and differences

$$\int f(x) \pm g(x)dx = \int f(x)dx \pm \int g(x)dx$$

Indefinite Integral: examples

C Example **O**:

Evaluate the integral:

$$\int x^4 - \frac{3}{2x} + e^{2x} - 9 \, dx = \int x^4 dx - \frac{3}{2} \int \frac{1}{x} dx + \int e^{2x} dx - \int 9 \, dx$$
$$= \frac{1}{5} x^5 - \frac{3}{2} \ln|x| + \frac{1}{2} e^{2x} - 9x + C$$

S Example ❷:

Evaluate the integral:

$$\int x^4 - \frac{3}{2x} dx + e^{2x} - 9 = \int x^4 dx - \frac{3}{2} \int \frac{1}{x} dx + e^{2x} - 9$$
$$= \frac{1}{5} x^5 - \frac{3}{2} \ln|x| + e^{2x} - 9 + C$$

Definite Integral

- Definite integrals involve integrating function between two points (called "limits")
- Definition of **definite integral**:

$$\int_{a}^{b} f(x)dx = \left| \int_{a}^{b} F(x) = F(x) \right|_{a}^{b} = F(b) - F(a)$$

• where F is any function satisfying F'(x) = f(x) for all $x \in [a, b]$

- ➔ (geometric) Interpretation
 - If f(x) > 0 over [a, b], $\int_{a}^{b} f(x) dx$ is the area between the graph of f(x), the x-axis and the lines x = a and x = b
 - If f(x) < 0 over [a, b], $-\int_{a}^{b} f(x) dx$ is the area between the graph of f(x), the x-axis and the lines x = a and x = b

Definite Integral: geometric interpretation

Example:

➡ Find area between x-axis and $f(x) = x^2$ over [2, 4] (shaded area in figure below)

Definite integral: Properties

Definite Integral: Present Value of a Future Cash Flow

Net present value = current value of a future reward, payment, ...

What about a flow/stream of future payments?

o Sum of all discounted payments at all periods

$$\circ \Pi = \int_0^\tau V e^{-rt} dt = V \int_0^\tau e^{-rt} dt = V * -\frac{1}{r} e^{-rt} \Big|_0^\tau = -\frac{V}{r} e^{-r\tau} + \frac{V}{r} = \frac{V}{r} (1 - e^{-r\tau})$$

- Assume: r = 0.06, $\tau = 5$ and V = \$3000
- Present value of future cash flow: $\Pi = \frac{\$3000}{0.06} (1 e^{-0.06*5}) \approx \12959

Integral (further information and exercises)

- More comprehensive discussion of integration techniques (on Paul Dawkin's website)
 - Basics and integration by substitution:
 - Explanation: <u>http://tutorial.math.lamar.edu/Classes/Calcl/IntegralsIntro.aspx</u>
 - Exercises: <u>http://tutorial.math.lamar.edu/Problems/Calcl/IntegralsIntro.aspx</u>
 - More techniques:
 - Explanation: <u>http://tutorial.math.lamar.edu/Classes/CalcII/IntTechIntro.aspx</u>
 - Exercises: <u>http://tutorial.math.lamar.edu/Problems/CalcII/IntTechIntro.aspx</u>
 - Multiple Integrals:
 - Explanation:

http://tutorial.math.lamar.edu/Classes/CalcIII/MultipleIntegralsIntro.aspx

• Exercises:

http://tutorial.math.lamar.edu/Problems/CalcIII/MultipleIntegralsIntro.aspx