Refresher Course in Calculus,Probability,
and Statistics

Day 2: Optimization



Introduction

< Optimization: the process of finding the relative maximum or minimum of
a function

< Optimization problems are certainly the most frequent in economics and
finance:
O Maximize profit or minimize cost (producer)
O Maximize utility (consumer)
O Maximize return or minimize variance (investor)
O Minimize sum of squared error when estimating a regression line
o ..

< Often in economics and finance, optimization problems
O imply constraints = Constrained optimization
< References:

[CAR] chap. 5; [CIA] chap. 9, 11, 12; [DOW] chap. 4-6, 20-21 [SBL] chap. 17-19;
[SH1] chap. 8, 13-14; [SH2] chap. 3, 8-10



Optimization

< requires primarily a (relevant) objective function

O Functional relationship between the object of optimization and choice variables:
choice variable(s)

l

object of optimization — Y = f(x)

objective function

O ususally assumed to be (twice) continuously differentiable

< Example: Maximize profit @
O Profit is the difference between total revenue (R) and total costs (C):m =R —C
O Both revenue and costs are a function of the quantity produced (= sold): Q

+ R=R(Q)
. C=C(Q)

O Objective function of the profit maximization problem is:

n(Q) = R(Q) — C(Q)

0 the only choice variable is quantity (Q)



Unconstrained Optimization

First-order condition:

< To find (local/global) extrema of a function, take first derivative and set it
equal to zero:

flx)=0

< Necessary condition known as first-order condition (FOC)
O Necessary but not sufficient.

< ldentifies all points at which the function is neither increasing nor
decreasing, but at a plateau.

< All points identified this way are candidates (or critical points) for a
possible maximum or minimum



Unconstrained Optimization (continued)

Second-order condition

S Once critical points are identified by FOC (i.e. f'(x) = 0 for x = a):
0 Take second derivative of f(x)
O Evaluate it at each critical point

If... then function is... and a is a
f'"(a) <0 concave at a relative maximum
f'"(a) >0 convex at a relative minimum
f'"(a)=0 test is inconclusive

< Assuming necessary FOC met, second-order condition (SOC) is a sufficient
condition to qualify an extremum



Unconstrained Optimization (continued)

Example: Find extreme points, maximum(s) and minimum(s) of f(x) =
—x3 4+ 9x

10
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Unconstrained Optimization (continued)

2 FOC:f'(x) =0=—-3x%+9
O roots:x;, = ++/3
0 Extreme points:(x7,y;) = (\/§ 6\/§) and (x3,y,) = (—\/§, —6\/§)

=g f(x) 5 —x3+9x

f'(x) 5 —3x%>+9
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Unconstrained Optimization (continued)

2 SOC: f"(x) = —6x
0 Atx =x; =+3:f"(V3) = —6V3 < 0: (x},y;) = (V3,6V3) is a maximum
0 Atx =x; =—V3:f"(—=V3) =6V3 > 0: (x3,y;) = (¥3,6V3) is a minimum

O
—

fll(x) = —6x f(X) =|— x3 + 9x

f'(x) =|-3x*+9

-10




Unconstrained Optimization (continued)

Possible cases where f'(a) = f"(a) = 0 (here with a = 0)

Minimum Maximum Inflection point



Unconstrained Optimization (continued)

Succesive derivative test
2 If f"(a) = 0,S0C inconclusive
< Succesive derivative test is helpful:

< Evaluate higher-order derivatives at critical point
> If:

O 1%t nonzero higher-order derivative is an odd-numbered derivative (i.e. 39, 5t,
etc.):

v’ Inflection point, i.e. a point at which function changes from being convex
(f""(a) > 0) to being concave (f"'(a) < 0) or vice versa

O 15t nonzero higher-order derivative is an even-numbered derivative (i.e. 4,
6t etc.) and if the value of this derivative is:

v’ hegative = Maximum
v’ positive = Minimum
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Multivariable Functions (continued)

<2 Searching for extrema of multivariable function z = f(x,y ):

Second-order sufficient

Condition(s) Maximum Minimum
irst- af (xy) of (x,y)
First-order necessary =2 = f, = 0and = f, =0
2 2
Second-order necessary d J;ixz,y) — f.. < 0and d };;xz,y) — f.. > 0 and
*f(xy) _ *fxy) _
ayz fyy <0 ay2 fyy >0
and

0*f(xy) _ azf(x,y)>

fxx X fyy > (fXY)Z (fxy - axay ayax
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Multivariable Functions (continued)

<2 Searching for extrema of multivariable function z = f(x,y ):
< If:

2 :

O fax X fyy < (fxy) & fyxx and f,,, same signs
—inflection point
Se.g. z=x%+y%+ 3xy

2 L
O fax X fyy < (fxy) & frx and f,,,, opposite signs
—>saddle point

Seg.,z=x%—1y?

2
O fax X fyy = (fxy) : test is inconclusive
>eg,z=x3+y3
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Multivariable Functions (continued)

2 Example @
Consider: f(x,y) = 3x%2 —xy + 2y? —4x — 7y + 12
FOCs:

O f[,=6x—y—4=0
O fy=—x+4y—-7=0
O One critical point at: (x*,y*) = (1,2)

O fxy =fyx = -1

2

2 frx X fyy =24 > (fxy) = (_1)2= 1

0 f(x,y) =3x%—xy+2y?—4x — 7y + 12 has extremum at (x*,y*) = (1,2)
which is a minimum.
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Multivariable Functions (continued)

2 Example @
Consider: f(x,y) = 3x%y + y3 — 3x%2 —3y2 + 2
FOCs:
O f,=6xy—6x=0
* f. =x(y —1) = 0whichis true forx = 0, ory = 1 or both
0 f,=3x*+3y*—6y=0
e Simplified: x% + y2 —2y =0
e Ifx=0:
>yt =2y=y(y—-2)=0
» Is fulfilled fory =0 ory = 2
e Ify=1:
>xl+1-2=0ox’=1ox=4+JV1=1%+1
> Is fulfilled forx = 1and x = —1
0 We have four critical points: (x*,y*) = (0,0), (x*,¥y*) = (0,2), (x*,y*) =
(1,1) and (x*,y*) = (—1,1)
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Multivariable Functions (continued)

2 Example @ continued
SOCs at each of the critical points (0,0), (0,2), (1,1) and (—1,1):
O fux =6y—6
0 fyy=6y_6=fxx
0 fxy — fyx = 6x
* At critical point at: (x*,y*) = (0,0)

2
» fux = fyy = —6and fi, =02 fixy X fy, =36 >0 = (fxy)
» The function has a maximum at (0,0)

* At critical point at: (x*,y*) = (0,2)

2
> fox = fyy =6 and fry =0 fir X £, = 36 > 0 = (fiy)
» The function has a minimum at (0,2)

> At critical point at: (x*,y*) = (—1,1)

2
> frox = fyy =0and fry = =6 for X f, = 0 <36 = (firy)
» The function has an inflection point at (—1,1)

> At critical point at: (x*,y*) = (1,1)

2
> fex = fyy =0and f, = 6 > frx X fyy =0<36 = (fxy)
» The function has a inflection point at (1,1)
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Multivariable Functions (continued)

S Example @: f(x,y) = 3x2y 4+ y3 —3x%2 —3y2 4 2
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Constrained Optimization

Simple problem: Utility maximization

objective function

constraint
Max/Min U = xy + 2x  subject to (s.t.) 4x + 2y = 60

Note:

U U . . :
o -~ > (0 and E > 0 (for x,y € R*) = to maximize U without constraints,
consumer needs to buy an infinite amount of both goods

O Budget constraint restricts the optimization problem taking into account the
wealth of the consumer

Simple solution:

O Use restriction to find: y = 60;4x = 30 — 2x
0 Substitute in U = x(30 — 2x) + 2x = —2x? + 32x
O Solve single variable problem:

FOC: 22 = —4x +32=0> x =8andy = 14
2
* SOC: ZTIZJ = —4 > 0: objective function is maximized at (x*,y*) = (8,14)
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Constrained Optimization

lllustration of a function with two variables z = f(x, y)

Free maximum

Constrained
maximum

"'::':,_ Constraint

Chiang (1984: 371)
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Constrained Optimization
The Lagrange Multiplier Method

< Solution to a problem
Max/Min f (x4, x,) subject to (s.t.) g(xy,x) =c
< Can be obtained by:

1. Write down the Lagrangian function:
L(xlr x21 A) — f(xlr xZ) + A[C — g(xlr xZ)]
where A is the Lagrange multiplier.

2. Differentiate £ wrt x4, x,, and A, and equate all to 0 (FOCs):
6£(x1,x2,/1) . 0

dxq
aL(xltxZJA)
=0
axz
0L(x{,x,, 1)
312 =c—g(x,x,) =0

3. Solve for the three unknowns x4, x,, and A to find critical values
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Constrained Optimization
The Lagrange Multiplier Method

& Example: max U = xy + 2x s.t. 4x + 2y = 60
1. Write down the Lagrangian function: L(x,y,A) = xy + 2x + 1[60 — 4x — 2y]
2. Differentiate £ wrt x, y, and 4, and equate all to 0 (FOCs):

0L(x,y, 1)
e — 42 -41=0
0x y+
0L(x,y, A
0Ly, D) _ i
dy
0L(x,y,7)
=60 —4x — 2y =0

3. Solve for the three unknowns x, y, and A to find critical values
* From1lsteq: A = % + % and from 2" eq.: A = g
— Thus:z+l=£orx =241
4 2 2 2
. In3rdeq.4(§+1)+2y= 60>y =14
*  From 3" eq. follows: x = 8

* From 1stor 2" eq. follows: A = 4
e Critical values: (x*,y*,A*) = (8,14,4)

20



Constrained Optimization (continued)
Significance of the Lagrange Multiplier

< Lagrange multiplier A approximates the marginal impact on objective
function caused by a small change in the constraint

0 A 1-unitincrease (decrease) in ¢ would cause optimal value of f (x4, x,) to
increase (decrease) by approximately A-units

* Last example: U,,,4, Should increase by 4 units if constraint increases from
4x + 2y = 60to4x + 2y = 61

* Economic interpretation: When the budget constraint changes by 1 CHF,
utility changes by 4 units = the marginal utility of 1 CHF

0 Areferred to as shadow price of resource

2 Note: L(x1,x5,4) = f(xy,x,) + Alc — g(xq, x,)] is equivalent to
L(xl'xZIA) — f(xl'xZ) — A[g(xl'xZ) _ C]
O Critical values are identical
o0 Sign of A differs

21



Constrained Optimization (contd)
Lagrange multiplier method

Example 2:

Optimise f(x,y) = 4x% + 3xy + 6y st.g(x,y) =x+7y =56

Set up Lagrangian:

L(x,y,z)=4x* + 3xy + 6y% + A(56 — x — y)

Differentiate wrt x, y and A and set equal to zero:

g—§=8x+3y—l=
—=3x+12y—-1=0
o
—=56—x—-y=0

Solve for x, y and A:

o Subtract (2) from (1) toget5x — 9y =0= x = %

o Substitute into (3): 56 —%—y =0=y=20=x=236>1=348.

(1)
(2)
(3)
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Constrained Optimization (contd)
Lagrange multiplier method

Critical values (x*, y*,A*) = (36,20,348)
Is this @ minimum or a maximum?

Bordered Hessian determinant:
|H(x*,y*,A*)| > 0 = Local maximum
|H(x*,y*,1*)| < 0 = Local minimum

0 —9x Yy
IH(x™, y*, A7) = |~ 9x Loy £xy
—9y Lyx Lyy

=0- (_gx)(_gx-l:yy - ny- _gy) + (_gy)(_gx-ﬁyx — Ly _gy)

23



Constrained Optimization (contd)
Lagrange multiplier method

Second order partials:  Direct: Ly, = 8, Ly, = 12; Cross: Ly, =3 = Ly
g(x;Y)=x+y=' g9 =1, gy=1

Calculate the determinant of the bordered Hessian:

0 —9x —gy 0 -1 -1
Iﬁ(x*;y*;/l*N: —9x Lxx ny =|-1 8 31=-14<0
~gy Lyx Ly,| -1 3 12

Critical values (x*,y*, A*) = (36,20,348) is a local minimum
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Constrained Optimization (contd)
Lagrange multiplier method

Back to our first example:

Compute the local max/min of f(x,y) = xy + 2xs.t. g(x,y) = 4x + 2y = 60

L(x,y,z)=xy+ 2x+ A(60 — 4x — 2y)
 Critical value: (x*,y*,1") = (8,14,4)

Maximum or minimum?
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Constrained Optimization (contd)
Lagrange multiplier method

First order partials:

oL oL

o =L, =y+2-—41 3 = Ly, =x—2A
Second order partials:

Direct: Ly = 0; Ly, =0

Cross: Ly, =1 =Ly,
gx,y) =4x+2y=60=> g, =4, g,= 2.

Calculate the determinant of the bordered Hessian:

0 —9x —gy 0 —4 -2
|H(x*;y*;l*)| = [—9x Lxx ny =|1—-4 0 11=16>0
—gy Lyx Ly,| 1-2 1 0

(x*,y*,A*) = (8,14,4) is a local maximum



Constrained Optimization (continued)
Multiconstraint Case

< Consider the following problem with n variables and m constraints:

/
gl(xll ...,Xn) =

Max/Min f(xq,...,%x,) S.t. <

Kgm(xl, ...,Xn) — Cm

< The Lagrangianis:
m
L(OX1, ooy Xy Ay ey Ay) = f(Xq, oo, X)) + Z A [cj — g7 (xq, e, %) ]
j=1

< FOCs write: ,
0L _Of (1, s Xn) Zm 209G ) i=1,..,n
axi axi j=1 / axi
0L

] — 1) . ;m

6_/1]- =cj — g7 (x4, ..., x,) =0,

26



Constrained Optimization (continued)
Example

Yx,y,z)=x+y+z=1
Optimi y,z)=x2+y2 +22 st Y
ptimize f(x,y,2) = X" +y" +27 s g?(x,y,z)=x+2y+3z=6
< Step 1:Set up the Lagrangian

L, y,z)=x*+y?+z2+ 1 [1—x—y—2z]+,[6 —x — 2y — 3Z]

< Step 2: Take the first partial derivatives wrt x, y, z, A1, and A,
0L(x,y,z) 0L(x,y,z) _

™ x—A—21,=0 o x—y—z=0
0L(x,y,2) 0L(x,y,2)
5 =2y—A,—21,=0 YR =6—x—2y—3z=0

0L(x,y,2)
0z

=2Z—Al—3AZ=O
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< We know the critical values: (x*,y*,z*) = (

(-2

517
=5r53) for (i 43) =
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