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Introduction

Optimization: the process of finding the relative maximum or minimum of 
a function
Optimization problems are certainly the most frequent in economics and 
finance:
o Maximize profit or minimize cost (producer)
o Maximize utility (consumer)
o Maximize return or minimize variance (investor)
o Minimize sum of squared error when estimating a regression line
o …

Often in economics and finance, optimization problems
o imply constraints Constrained optimization

References: 
[CAR] chap. 5; [CIA] chap. 9, 11, 12; [DOW] chap. 4-6, 20-21 [SBL] chap. 17-19; 
[SH1] chap. 8, 13-14; [SH2] chap. 3, 8-10 
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Optimization

requires primarily a (relevant) objective function
o Functional relationship between the object of optimization and choice variables:

=
o ususally assumed to be (twice) continuously differentiable

Example: Maximize profit 
o Profit is the difference between total revenue and total costs : =
o Both revenue and costs are a function of the quantity produced (= sold): 

• =
• =

o Objective function of the profit maximization problem is:=
o the only choice variable is quantity 

object of optimization objective function
choice variable(s)
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Unconstrained Optimization

First-order condition:
To find (local/global) extrema of a function, take first derivative and set it 
equal to zero: = 0
Necessary condition known as first-order condition (FOC)
o Necessary but not sufficient.

Identifies all points at which the function is neither increasing nor 
decreasing, but at a plateau. 

All points identified this way are candidates (or critical points) for a 
possible maximum or minimum
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Unconstrained Optimization (continued)

Second-order condition
Once critical points are identified by FOC (i.e. = 0 for = ):
o Take second derivative of 
o Evaluate it at each critical point

Assuming necessary FOC met, second-order condition (SOC) is a sufficient
condition to qualify an extremum

If… then function is… and is a < 0 concave at relative maximum> 0 convex at relative minimum= 0 test is inconclusive
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Unconstrained Optimization (continued)

Example: Find extreme points, maximum(s) and minimum(s) of =+
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Unconstrained Optimization (continued)

FOC: = 0 = 3 + 9
o roots: , = ± 3
o Extreme points: , = 3, 6 3 and , = 3, 6 3

= 3 + 9

( ) = + 9
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Unconstrained Optimization (continued)

SOC: =
o At = = 3: 3 = 6 3 < 0: , = 3, 6 3 is a maximum

o At = = 3: 3 = 6 3 > 0: , = 3, 6 3 is a minimum

= 3 + 9

( ) = + 9( ) = 6
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Unconstrained Optimization (continued)

Possible cases where = = 0 (here with = 0)

= = =

Minimum Maximum Inflection point
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Unconstrained Optimization (continued)

Succesive derivative test
If = 0, SOC inconclusive
Succesive derivative test is helpful:
Evaluate higher-order derivatives at critical point
If:
o 1st nonzero higher-order derivative is an odd-numbered derivative (i.e. 3rd, 5th,

etc.):
Inflection point, i.e. a point at which function changes from being convex 
( > 0) to being concave ( < 0) or vice versa

o 1st nonzero higher-order derivative is an even-numbered derivative (i.e.  4th,
6th, etc.) and if the value of this derivative is:

negative Maximum
positive Minimum
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Multivariable Functions (continued)

Searching for extrema of multivariable function = , :

Condition(s) Maximum Minimum

First-order necessary , = = 0 and , = = 0
Second-order necessary , = < 0 and , = < 0 , = > 0 and , = > 0
Second-order sufficient

and× > = , = ,
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Multivariable Functions (continued)

Searching for extrema of multivariable function = , :
If:

o × < & and same signs
inflection point
e.g. = + +

o × < & and opposite signs
saddle point
e.g., =

o × = : test is inconclusive
e.g., = +
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Multivariable Functions (continued)

Example 
Consider: , = 3 + 2 + 12
FOCs:
o = 4 = 0
o = + 7 = 0
o One critical point at: , = 1,2
SOC:
o = 6
o = 4
o = = 1× = 24 > = ( 1) = 1
o , = 3 + 2 + 12 has extremum at , = 1,2

which is a minimum.
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Multivariable Functions (continued)

Example 
Consider: , = 3 + 3 3 + 2
FOCs:
o = = 0

• = 1 = 0 which is true for = 0, or = 1 or both
o = 3 + 3 = 0

• Simplified:  + 2 = 0
• If = 0: = 2 = 0

Is fulfilled for = 0 or = 2
• If = 1:+ 1 2 = 0 = 1 = ± 1 = ±1

Is fulfilled for = 1 and = 1
o We have four critical points: , = (0,0), , = (0,2), , =(1,1) and , = ( 1,1)
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Multivariable Functions (continued)

Example continued
SOCs at each of the critical points (0,0), (0,2), (1,1) and ( 1,1):
o = 6
o = 6 =
o = =

• At critical point at: , = 0,0= = 6 and = 0 × = 36 > 0 =
The function has a maximum at 0,0

• At critical point at: , = 0,2= = 6 and = 0 × = 36 > 0 =
The function has a minimum at 0,2

At critical point at: , = 1,1= = 0 and = 6 × = 0 < 36 =
The function has an inflection point at 1,1

At critical point at: , = 1,1= = 0 and = 6 × = 0 < 36 =
The function has a inflection point at 1,1
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Multivariable Functions (continued)

Example : , = 3 + 3 3 + 2
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Constrained Optimization

Simple problem: Utility maximization

Note:
o > 0 and > 0 (for , ) to maximize without constraints,

consumer needs to buy an infinite amount of both goods
o Budget constraint restricts the optimization problem taking into account the

wealth of the consumer
Simple solution:

o Use restriction to find: = = 30
o Substitute in = 30 + = 2 +
o Solve single variable problem:

• FOC: = + 32 = 0 = 8 and = 14
• SOC: = 4 > 0: objective function is maximized at ( , ) = 8,14

Max/Min = + subject to (s.t.) + = 60
Budget constraintobjective function(utility function)
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Constrained Optimization

Illustration of a function with two variables = ,

18
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Constrained Optimization
The Lagrange Multiplier Method

Solution to a problem

Can be obtained by:
1. Write down the Lagrangian function:, , = , + ,

where is the Lagrange multiplier.
2. Differentiate wrt , , and , and equate all to 0 (FOCs):

3. Solve for the three unknowns , , and to find critical values

Max/Min , subject to (s.t.) , =

, , = 0, , = 0, , = , = 0
19



Constrained Optimization
The Lagrange Multiplier Method

Example: max = + s.t. + = 60
1. Write down the Lagrangian function: , , = + + 60
2. Differentiate wrt , , and , and equate all to 0 (FOCs):

3. Solve for the three unknowns , , and to find critical values
• From 1st eq: = + and from 2nd eq.: =

– Thus: + = or = + 1
• In 3rd eq. 4 + 1 + = 60 = 14
• From 3rd eq. follows: = 8
• From 1st or 2nd eq. follows: = 4
• Critical values: , , = 8,14,4

, , = + 2 = 0, , = = 0, , = 60 = 0
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Constrained Optimization (continued)
Significance of the Lagrange Multiplier

Lagrange multiplier approximates the marginal impact on objective 
function caused by a small change in the constraint
o A 1-unit increase (decrease) in would cause optimal value of , to

increase (decrease) by approximately -units
• Last example: should increase by 4 units if constraint increases from+ = 60 to + = 61
• Economic interpretation: When the budget constraint changes by 1 CHF,

utility changes by 4 units = the marginal utility of 1 CHF

o referred to as shadow price of resource

Note: , , = , + , is equivalent to , , = , ,
o Critical values are identical
o Sign of  differs
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Example 2:

Optimise 𝑓 𝑥, 𝑦 = 4𝑥2 + 3𝑥𝑦 + 6𝑦2 s.t. 𝑔 𝑥, 𝑦 = 𝑥 + 𝑦 = 56

Set up Lagrangian:
ℒ(𝑥, 𝑦, 𝑧) = 4𝑥2 + 3𝑥𝑦 + 6𝑦2 + 𝜆 56 − 𝑥 − 𝑦

Differentiate wrt 𝑥, 𝑦 and 𝜆 and set equal to zero:
𝜕ℒ

𝜕𝑥
= 8𝑥 + 3𝑦 − 𝜆 = 0 (1)

𝜕ℒ

𝜕𝑦
= 3x + 12𝑦 − 𝜆 = 0 (2)

𝜕ℒ

𝜕𝜆
= 56 − 𝑥 − 𝑦 = 0 (3)

Solve for 𝑥, 𝑦 and 𝜆:

o Subtract (2) from (1) to get 5𝑥 − 9𝑦 = 0 ⇒ 𝑥 =
9

5𝑦

o Substitute into (3): 56 −
9

5𝑦
− 𝑦 = 0 ⇒ 𝑦 = 20,⇒ 𝑥 = 36 ⇒ 𝜆 = 348.

Constrained Optimization (contd)
Lagrange multiplier method

22



23

Critical values 𝑥∗, 𝑦∗, 𝜆∗ = (36,20,348)

Is this a minimum or a maximum?

Bordered Hessian determinant:
ഥ𝐇 𝑥∗, 𝑦∗, 𝜆∗ > 0 ⇒ Local maximum
ഥ𝐇 𝑥∗, 𝑦∗, 𝜆∗ < 0 ⇒ Local minimum

ഥ𝐇 𝑥∗, 𝑦∗, 𝜆∗ =

0 −𝑔𝑥 −𝑔𝑦
−𝑔𝑥 ℒ𝑥𝑥 ℒ𝑥𝑦
−𝑔𝑦 ℒ𝑦𝑥 ℒ𝑦𝑦

= 0 − (−𝑔𝑥) −𝑔𝑥 . ℒ𝑦𝑦 − ℒ𝑥𝑦 . −𝑔𝑦 + −𝑔𝑦 −𝑔𝑥 . ℒ𝑦𝑥 − ℒ𝑥𝑥 . −𝑔𝑦

Constrained Optimization (contd)
Lagrange multiplier method
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Second order partials: Direct: ℒ𝑥𝑥 = 8, ℒ𝑦𝑦 = 12; Cross: ℒ𝑥𝑦 = 3 = ℒ𝑦𝑥
𝑔 𝑥, 𝑦 = 𝑥 + 𝑦 ⇒ 𝑔𝑥 = 1; 𝑔𝑦 = 1

Calculate the determinant of the bordered Hessian:

ഥ𝐇 𝑥∗, 𝑦∗, 𝜆∗ =

0 −𝑔𝑥 −𝑔𝑦
−𝑔𝑥 ℒ𝑥𝑥 ℒ𝑥𝑦
−𝑔𝑦 ℒ𝑦𝑥 ℒ𝑦𝑦

=
0 −1 −1
−1 8 3
−1 3 12

= −14 < 0

Critical values 𝑥∗, 𝑦∗, 𝜆∗ = (36,20,348) is a local minimum

Constrained Optimization (contd)
Lagrange multiplier method
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Back to our first example:

Compute the local max/min of 𝑓 𝑥, 𝑦 = 𝑥𝑦 + 2𝑥 s.t. 𝑔 𝑥, 𝑦 = 4𝑥 + 2𝑦 = 60

ℒ(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 2x + 𝜆 60 − 4𝑥 − 2𝑦
• Critical value: 𝑥∗, 𝑦∗, 𝜆∗ = (8,14,4)

Maximum or minimum? 

Constrained Optimization (contd)
Lagrange multiplier method



Constrained Optimization (contd)
Lagrange multiplier method

First order partials:
𝜕ℒ

𝜕𝑥
= ℒ𝑥 = 𝑦 + 2 − 4𝜆

𝜕ℒ

𝜕𝑦
= ℒ𝑦 = 𝑥 − 2𝜆

Second order partials:
Direct: ℒ𝑥𝑥 = 0; ℒ𝑦𝑦 = 0

Cross: ℒ𝑥𝑦 = 1 = ℒ𝑦𝑥

𝑔 𝑥, 𝑦 = 4𝑥 + 2𝑦 = 60 ⇒ 𝑔𝑥 = 4, 𝑔𝑦= 2.

Calculate the determinant of the bordered Hessian:

ഥ𝐇 𝑥∗, 𝑦∗, 𝜆∗ =

0 −𝑔𝑥 −𝑔𝑦
−𝑔𝑥 ℒ𝑥𝑥 ℒ𝑥𝑦
−𝑔𝑦 ℒ𝑦𝑥 ℒ𝑦𝑦

=
0 −4 −2
−4 0 1
−2 1 0

= 16 > 0

𝑥∗, 𝑦∗, 𝜆∗ = (8,14,4) is a local maximum
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Constrained Optimization (continued)
Multiconstraint Case

Consider the following problem with variables and constraints:

/ , … , . . , … , =, … , =
The Lagrangian is:, … , , , … , = , … , + , … ,

FOCs write:= , … , , … , = 0, = 1, … ,
= , … , = 0, = 1, … ,
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Constrained Optimization (continued)
Example

Optimize , , = + + . . , , = + + = 1, , = + + = 6
Step 1: Set up the Lagrangian, , = + + + 1 + 6
Step 2: Take the first partial derivatives wrt , , , , and :, , = = 0 , , = 1 = 0, , = 2 = 0 , , = 6 = 0, , = 3 = 0
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We know the critical values: , , = , , for , =, 4
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