Refresher Course in Calculus,
Probability, and Statistics

Day 3: Probability



Introduction

“Life’s most important questions are, for the most part, nothing but probability problems.”
(Pierre-Simon Laplace)

“Doubt is not a pleasant condition, but certainty is absurd.”
(Voltaire)

< Most aspects of the world around us have an element of randomness or
uncertainty:

o Will it rain tomorrow?
0 Will I win the lottery next week?
o0 Will I earn more than 6,000 CHF/month some day?

< Theory of probability provides mathematical tools for quantifying and
describing this randomness and dealing with uncertainty.

< Probability is needed to understand regression analysis and econometrics
< References:
0 [BWA] chap. 2; [SWA] chap. 2; [HGL] chap. 1 + appendix B



Probability

Basic definintions

& Trial: event whose outcome is unknown (also called: experiment or
observation)

O Flipping a coin
O Rolling a dice
< Sample Space: specification of all possible outcomes of a trial, denoted S

O For flipping a coin the sample space is: S = {heads, tails}
O For rolling a dice the sample spaceis: S = {1,2,3,4,5, 6}
< Outcome: mutually exclusive potential results of a random process
< Event: specification of the outcome of one trial (single outcome or a set)
O The event “heads in flipping a coin”: A = {heads}
O The event “odd number in rolling a dice”: B = {1, 3,5}

< Mutual exclusivity: events that cannot occur together are mutual
exclusive (e.g. passing a test and not passing a test)

< Independence: the outcome of one trial has no relationship to the
outcome of another trial



Probability

Basic definintions (continued)

< Relative frequency definition of probability:

If an experiment is repeated n times under essentially identical conditions
and the event A occurs m times, then as n gets large the ratio %

approaches the probability of A.
m
P(A) = lim —

n-oo N

10

Kerrich’s experiment:
Tossing a coin 10,000
times

Fercentage of Heads - 50%
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Mumber of Tosses



Probability

Properties
Event Probability
A P(A) € [0,1]
not A P(AS) =1 — P(A)
Ao B P(AUB) = P(A) + P(B) if A and B are mutually exclusive
or
P(AUB)=P(A)+P(B)—P(ANB)
Aand B P(AnB) =P(A)P(B) if Aand B are independent
an
P(A N B) = P(A|B)P(B) = P(B|A)P(A)
| P(ANnB) P(B|A)P(A)
A B P(A|B) = =
SEn “IB) = =5 ) P(B)




Random Variables

< Random variable (or stochastic variable): variable whose values result
from measurement of a random process

O Numerical summary of a random process
O Probabilities are associated with possible values of random variable

< Example of a random variable:
O number of times word crashes while writing a term paper
O number of times heads comes up when tossing a coin 10 times
O length of time it takes a random student to undertstand Bayes’s theorem

< Random variables can be:

O Discrete: can take only a limited number of values (gender, toss of a coin, roll
of a die, ...)

O Continuous: can take any value in an interval (time, earnings, prices, ...)



Discrete Random Variables
Probability Density Function

< Probability density function (pdf): summarizes probabilities of possible
outcomes

< For discrete random variables, it’s like a table contrasting all possible
values of the variable with the probability that each value will occur

O indicates the probability of each possible value occuring

O (the value of) pdf of discrete random variable X, denoted f (x), is the
probability that X takes value x:

f(x) =PX =x)
o 0<sf(x)<1
O If X takes n possible values x4, ..., x;;:
PX=x)++PX=x)=f(x)++f(xy) =1



Discrete Random Variables
Probability Density Function: Example

< pdf for number of heads out of 10 coin tosses:

Outcome (hnumber of heads)

0 1 2 3 4 5 6 7 8 9 10

f(x) 0.001 0.0098 0.0439 0.1172 0.2051 0.2461 0.2051 0.1172 0.0439 0.0098 0.001
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Discrete Random Variables
Probability Density Function: Example (continued)

< pdf for number of heads out of 10 coin tosses (continued):

Outcome (hnumber of heads)

0 1 2 3 4 5 6 7 8 9 10

f(x) 0.0010 0.0098 0.0439 0.1172 0.2051 0.2461 0.2051 0.1172 0.0439 0.0098 0.0010

< Probability of an event (or compound event) can be computed from pdf

O Probability of event “exactly 7 heads”:
P(X=7)=01172=11.72%
O Probability of compound event “even number of heads”
PX=0)+PX=2)+PX=4)+PX=6)+P(X=8)+PX =10)
= 0.0010 + 0.0439 + 0.2051 + 0.2051 4+ 0.0439 4+ 0.0010 = 0.5 = 50%

O Probability of compound event “no more than 3 heads”:
PX=0)+PX=1)+PX=2)+P(X =3)
= 0.001 + 0.0098 4+ 0.0439 + 0.1172 = 0.1719 = 17.19%



Discrete Random Variables
Cumulative Density Function

< Cumulative distribution function (cdf): alternative way to represent
probabilities

& cdf of random variable X, denoted F(x), is the probability that X is less

than or equal to x:
F(x) =P(X <x)

< cdf for number of heads out of 10 tosses:

Outcome (number of heads)

0 1 2 3 4 5 6 7 8 9 10

f(x) 0.001 0.0098 0.0439 0.1172 0.2051 0.2461 0.2051 0.1172 0.0439 0.0098 0.001

F(x) 0.001 0.0108 0.0547 0.1719 0.3770 0.6231 0.8282 0.9454 0.9893 0.9990 1
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Discrete Random Variables
Cumulative Density Function (continued):
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Discrete Random Variables
Special Case: Binary Variables

< Important special case of discrete random variable: random variable that
can take only two possible values (0 or 1)

O Such variables are called binary variables, indicator variables, or dummy
variables, dichotomous variables

< Probability distribution of binary random variable: Binomial or Bernoulli
distribution

0 Sequence of independent Bernoulli trials n with constant probability of
success at each trial p. We are interested in the total number of successes x.

S Example: In the 4t quarter of 1988 in Massachusetts, USA, 60 new borns tested
positive for HIV antibodies.

0 What are the chances that 30 children will be infected?
0 What are the chances that 30+ are infected?
O Possible model: binomial with p = 0.25 and n = 60.

Jakob Bernoulli,
1655-1705
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Discrete Random Variables
Special Case: Binary Variables (continued)

Binomial coefficient
< The Binomial distributio%
n n!
P — X(1 —p)t—% = X(1 —p)—x
(%) (x)p (1-p) Am—P 1=P)

where x is the number of successes, p probability of success, and n number of
trials (p and n are parameters of the model).

< Probability that 30 newborns will be HIV-positive:
_ (60 30 60-30 _ _ 60! 30 30 _
o P(30) = (3,)0.25%°(1 — 0.25) = 0G0 0.2539.0.753% ~ 0.00018 =
0.018%

< So the probability that 30 or more of the newborns will be HIV-positive:
29

Px>230)=1-P(x<30)=1- Z P(x =1i) = 0.00027 = 0.027%
i=0

< A good visualization of the logic of the binomial distribution is the quincux:
http://www.mathsisfun.com/data/quincunx.html
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Discrete Random Variables
Expected Value

< Mathematical expectation: mean of random variable (long run average
value of random variable over many repeated trials or occurrences)

< Expected value of discrete random variable X, taking values x4, ..., xp:
EX)=pux =xP(X =x1)+ -+ x,P(X = x,)
= x1f (1) + -+ xnf (x7)

n

= inf(xi) = zxf(x)

=1 X

O weighted average of the possible outcomes (weights = probabilities)

S For binary variables: E(B) =1Xp+0x(1—p)=p
O For the binomial distribution with n trials: E(B) = ug = np

S Forlinear combinations: E(aX + bY +¢) =aE(X)+ bE(Y) + ¢

14



Discrete Random Variables
Variance and Standard Deviation

<& Variance and standard
deviation measure dispersion
or “spread” of probability
distribution
O Larger variance and standard

deviation = more “spread
out” values

<& Variance of discrete random variable X:
var(X) = of = E[(X — ux)*] = E(X?) — ug
< For a binary variable: var(B) = p(1 — p)
< For the binomial distribution with n trials: var(B) = np(1 — p)

< For linear combinations: var(aX + bY + ¢) = a?var(X) +
b?var(Y) + 2ab - cov(X,Y) = a’0f + b%0¢ + 2aboyy



Discrete Random Variables
Variance and Standard Deviation (continued)

< Standard deviation:

oy = Jvar(X) = /a)%

O Same units of measure as the random variable

< For our example with the new borns:
O How many should we expect to be HIV-positive?
E(B) = ug =np =60x0.25 =15
O Apply an empirical rule that 2/3 of a (symmetric) distribution is covered in a
range of ug + oy and 95% is covered by ug + 20y

op = Jvar(B) = /np(1 —p) = /60 x 0.25(1 — 0.25) = V11.25 ~ 3.3541
0 15+ 3.3541 = (11.65,18.35) ~ [11,19]
0 15+ 6.7082 = (8.29,21.71) =~ [8, 22]

O Note: in our case the distribution is not perfectly symmetric
O More exact intervals are [11.56,18.99] and [8.83, 22.72]

16



Discrete Random Variables
Other Measures of the Shape of a Distribution

< Skewness measures lack of symmetry:

E[(X — ux)°]
0%
0 S = 0: symmetric, S < 0: left-skewed (long left tail), S > 0: right-skewed (long
right tail)

O Skewness is unitless

Skewness =

< Kurtosis measures how much mass in the tails of distribution:

E[(X — ux)*]

4
Ox

Kurtosis =

O How much of the variance of X comes from extreme values (called: outliers)
O Benchmark value is 3 (normal distribution); K — 3 called "excess kurtosis"

0 K = 3: mesokurtic, K > 3: leptokurtic, K < 3: platykurtic
O Kurtosis is unitless and cannot be negative

17



Four Distributions with Different Skewness and Kurtosis
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Several Discrete Random Variables
Joint and Marginal Distributions

< Joint probability that X = x and Y = y (joint pdf of X and Y)

fx,y) =PX =x,Y =)

0 Sum of all joint probabilities: ., 3., f(x,y) = 1

< Marginal probability distribution of random variable X:
fx(x) = 2 f(x,y) for eachvalue of X
y

O Just another name for its probability distribution

0 Computed from joint distribution of X and Y by adding up probabilities of all
possible outcomes for which X takes on a specific value

19



Several Discrete Random Variables
Conditional Distribution

< Conditional pdf : probability that random variable Y takes value y given

that X = x:
B L PX=xY=y)
P(Y=y|lX=x)= PIX =)
_fxy)

< Statistical independence:
PY =ylX=x)=P¥ =y)

flx) =f) =)

20



Several Discrete Random Variables
Example

< Joint distribution of computer crashes and operating system

=

Operatingsystem M =0 M=1 M=2 M=3 M=4 Total

Windows (OS = 0) 0.531 0.08 0.05 0.029 0.01 0.7
Linux (OS = 1) 0.269 0.02 0.01 0.001 0.00 0.3
Total 0.80 0.10 0.06 0.03 0.01 1.00

Probability that computer will not crash at all and be running on Linux:

O Joint probability: P(M = 0,05 = 1) = 0.269 = 26.9%
Probability any random computer is running on Windows:

0 Marginal probability: P(0S = 0) = Y P(M = x;,0S = 0) = 0.7 = 70%
Probability that a computer that doesn’t crash when running on Linux:

0 Conditional probability: P(M = 0]0S = 1) = 20S=LM=0) _ 0269 8967 =

P(0S=1) 0.3
89.67%

Expectation of probability of no crash with Linux given statistical
independence:

o P(M=0[0S=1)=P(M=0)=0.80

21



Several Discrete Random Variables
Conditional Expectation

< Conditional expectation (also called: conditional mean) of Y given X = x,
if Y can take on k values y4, ..., Y&:

k
EVIX =) = ) yiP(Y =yilX =) = ) yf (1)
i=1 y

O Example: How many crashes do | expect when working with

O Linux computer: E(M|0S = 1) = Y} ,m;P(M =m;|0S=1) =0 -

0269 4 1.902, 5, 001 5 0001, , 900 4143
0.3 0.3 0.3 0.3 0.3

0 Windows computer: E(M|0S = 0) = Y;_,m;P(M = m;|0S = 0) =

0.2 4 1.2 2.290, 32929, 4,200~ 0.439
0.7 0.7 0.7 0.7 0.7
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Several Discrete Random Variables
Conditional Variance

< Conditional variance (variance of Y given a value for X):
k

var(YIX =) = ) [y; = E(VIX = 0)PP(Y = yi1X = x)
i=1
O Example: Conditional variance of crashes when working with:
* Linux computer:

var(M|0S = 1) = 24 {[m; — E(M|0S = 1)]?°P(M = m;|0S = 1)}
i=1

0.269 0.02 0.01
= (0-0.143)* ——=+ (1 - 0.143)* - —+ (2~ 0.143)*

0. 0.3 0.3
, 0.001 , 0.00
+(3-0.143)% - ———+ (4 — 0.143)* - — = 0.209

* Windows computer:

4
par(M|0S = 1) = Z{[mi — E(M|0S = 1)]2P(M = m;|0S = 1)}

i=0
~ 0.809
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Several Discrete Random Variables
Covariance and Correlation

& Covariance between X and Y:
cov(X,Y) = oxy = E[(X —ux)(¥ — uy)] = E(XY) — uxuy

O ayy > 0: positive association (when X > uy thenY > uy and when X < uy
thenY < uy)

0 oyxy < 0: negative association

O oyy = 0: neither negative nor positive association

& Correlation between X and Y:
cov(X,Y) Oxy

Jvar(X)\/var(Y) B S G—

O Pearson product-moment correlation coefficient

corr(X,Y)=p =

O unitless measure
0O -1<p<1

Karl Pearson,
1857-1936
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Continuous Random Variables

< Continuous random variables can take any value in an interval

O GDP, interest rates, income, stock market indices, exchange rates, ... are
(treated as) continuous variables

< Because they can take uncountable many values, probability that any
single value occurs is zero

O For example: if X is tomorrow’s EUR|CHF exchange rate, P(X = 1.240) =0

< For continuous variables, probability statements are meaningful when we
consider outcomes within intervals

O For example: if X is tomorrow’s EUR|CHF exchange rate, P(X = 1.240) = 0
(because 1.2400 is usually considered an interval, e.g. [1.2395, 1.2404])

25



Continuous Random Variables
Probability Density Function

< Probability density function (pdf) summarizes the probability for a
continuous variable

< Let X be a continuous random variable with pdf f (x)
o f(x)=0

o] j f(x)dx =1
o b
0] P(aSXSb)=jf(x)dx

Probability that X falls in the interval [a, b] = the area under f(x) between
these points

26



pdf of a Continuous Random Variable
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Continuous Random Variables
Cumulative Density Function

< Cumulative probability distribution (cdf) defined as for discrete variable:
probability that random variable is less than or equal to a specific value

P(X<a)= ff(x)dx = F(a)

< cdf obtained by integrating pdf

< Hence, Possible to obtain pdf by differentiating cdf:

dF
Fo = 2 = i)

28



An Empirical pdf

Male Workers’ Income in Switzerland
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An Empirical cdf

Male Workers’ Income in Switzerland
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Continuous Random Variables
Expectation and Variance

< Expectation:

co

iy = E(X) = j Xf (x)dx

— 00

O Compared to discrete case, integral simply replaces summation
O Interpretation: average value of X for an infinite number of repetitions

< Variance:

62 = E[(X — pg)?] = j (x — )2 f()dx = E(X?) — 12
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Several Continuous Random Variables
Joint, Marginal, and Conditional Probability Distributions

>

=

Joint probability density function f (x, y) is a surface and probabilities are volumes
under the surface

Probability that X is between a and b and at the same time Y is between ¢ and d:

b d

x=ay=c 02+ :
Marginal probability density function for Y: s | T
a1
= CoLet / ' %,
f) J f(x,y)dx sl /{fffl ‘\‘Q
Conditional probability density function: 0
f&xy)

flx) = 00

0 Unlike the discrete case f(x|y) is not a probability but a density function that
can be used to compute probabilities:

(0]

E(YIX = x) = j Vf ) dy

— 00
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Normal Distribution

< Normal distribution (or Gaussian distribution): continuous probability
distribution with bell-shaped pdf

< Normally distributed random variable X with mean u and variance o
symbolized:

2

X~N(u,0%)
S pdfof X:
1 [
(x) = el 202
/ 2102

I['1.96(; I |l+1.96r_7

< Standard normal distribution: Z~N(0,1)

0 Computer softwares and tables provide values of standard normal cdf, usually
denoted ®(z) = P(Z < z)
0 Standardization to compute probabilities for variable X~N(u, 02):
x —
zZ = a
o

Abraham de Moivre,
1667-1754




Normal Distribution (continued)

Calculating probabilities

S What is the probability that Y < 2if Y~N(1,4)

O Step 1: z-standardize to get z-score

X—U
7 =

_2-1

= 0.5

o

O Step 2: compare z-score to distribution table

Yy —1
P (T < 0.5> = $(0.5) = 0.691

P(Y <2)

N(1,4)

distribution

t
-20

T
-10

t
10

i
20

P(Z <0.5)

N(0,1)
distribution

t i
-5 0 5
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Other important distributions

< Chi-square distribution |
0 V =277 +Z5 + -+ Z5~x{m with m degrees of freedom "
0 whereZ;~N(0,1),i =1,2,...,mand Z; are independent

¢« Asm — oo, )((Zm) — Z~N(0,1) and )((21) = 72

& Student t-distribution

0 t=—
I

0 where Z~N(0,1) and V~)((2m)
* Asm — 0,tuy) - Z~N(0,1)

~tm) with m degrees of freedom

< F-distribution

o
iy
Il
<|§
|
|
ol
l

Fn,ny with m, n degrees of freedom

Density function

0.05

2
O Relationship to Chi-square distribution: lim F =%"
n—>00o

245 F



